2012. október 31., szerda

SETI

A világűr megfigyelésének talán a lehető legspeciálisabb területe a földön kívüli intelligencia kutatása. Az angol „Search for Extra- Terrestial Intelligence” kifejezésből származó SETI betűszó egy új, több tudományos területet integráló kutatási terület, a csillagászat, az asztrobiológia, az informatika és a filozófia határtudománya. A modern kori kutatók az univerzum nagysága, a benne levő óriási számú égitest és a sokszínű, mégis sok azonosságot, párhuzamot mutató fizikai, kémiai folyamatok alapján azt feltételezik, hogy a földi élet nem egyedi, hanem másutt is kialakulhatott hozzá hasonló. A más csillagok bolygóin – esetleg óriásbolygók holdjain – kialakult intelligens létformák a technika mai szintjén közvetlenül természetesen nem fedezhetők fel, ezért az új tudományág azok jeleit keresi, elsősorban távközlési módszerekkel, a másik civilizáció rádió-, radar- esetleg televíziós jeleinek detektálásával (az emberiség is ilyen jeleket sugárzott először az űrbe, így ha egy másik civilizáció is keresi az élet jeleit, ilyen jeleket fog először észlelni a Föld lakóival kapcsolatban). A keresés eddig nem hozott eredményt – leszámítva az egyszeri alkalommal fogott Hűha! jelet, melyet nem sikerült idegen üzenetként igazolni –, igaz az aktív észlelési időszak még rendkívül rövid ideje tart.

Űrállomás

Az űrhajósokkal végzett programok közül kiemelkednek a főként élettani megfigyelésekre létrehozott űrállomások – a Mir, vagy a Nemzetközi Űrállomás (ISS). Az emberekkel végzett űrkutatás a Hold elérése nyomán követően a Föld körüli pályán végzett kísérletek felé fordult, és a két vezető űrhatalom űrállomás építésbe fogott. A Szovjetunió a Szaljut-programot, az USA a Skylab-programot indította útjára, hogy hosszú időtartamú repülésekkel elsősorban élettani adatokra tegyen szert a súlytalanságnak hosszú időre kitett emberi szervezet reakcióit illetően. Később a NASA az űrrepülőgép fejlesztése miatt kiszállt az űrállomás építésből, a szovjetek viszont létrehozták a második generációs Mir űrállomást. Az űrrepülőgép önálló műveletekre is képes, és ennek révén sokáig önálló repüléseket is végeztek vele, azonban hamarosan összekapcsolódott a két program, a Space Shuttle az orosz űrállomásra szállított amerikai űrhajósokat. A cél ezúttal is ugyanaz volt: tapasztalatok gyűjtése az űrbeli lét hosszútávú hatásairól. Végül nemzetközi összefogással elindult a legnagyobb űrállomás program, az ISS építése. Az így szerzett tapasztalatok az űrkutatás következő lépcsőjét jelentő marsrepüléshez, vagy állandó holdbázis létrehozásához kellenek majd. Az élettani kísérleteken kívül természetesen más is zajlik az űrállomásokon, ipari kísérletek, növény- és állatkísérletek, földmegfigyelés, vagy akár katonai tevékenység is, a fő profil mégis az űrprogramok továbblépéséhez szükséges alapok lefektetése.

Nagy Obszervatóriumok

A világűr űrszondás felfedezésének egy speciális – a közelmúltban kiteljesedett – területe a Föld körüli pályáról végzett „távérzékelés”, különböző űreszközökkel a Tejútrendszer, vagy az univerzum más távoli tájainak megfigyelése. Ennek a területnek a legismertebb eszközei a NASA Nagy obszervatóriumok programjának egységei, köztük a Hubble űrtávcső. Az amerikai űrügynökség az elektromágneses spektrum széles tartományainak vizsgálatára négy szondát juttatott fel 1990 és 2003 között. A Hubble űrtávcső a látható fény és a közeli infravörös, a Compton űrtávcső a gamma és a távoli röntgen, a Chandra űrtávcső a röntgen és a Spitzer űrtávcső az infravörös tartományban végez – illetve végzett – megfigyeléseket. A felfedezéseikből a kozmológia profitált a legtöbbet, az előző másfél évtizedben a kozmosz keletkezésének és fejlődéstörténetének kutatói több tudományos áttörést érhettek el a négy szonda eredményeivel.

Grand Tour, külső Naprendszer kutatás

A NASA-nál az 1970-es évek elején a bolygók keringését tanulmányozva szakemberek rájöttek, hogy a külső óriásbolygók ritka együttállása előtt állnak a kutatók: ha körültekintően számítják ki a pályát, akkor egyetlen szondával végiglátogatható lehet az összes gázóriás. A repülés a „Grand Tour” nevet kapta. A küldetés előtt két megválaszolatlan kérdés állt:
  • vajon sérülés nélkül átjuthat-e egy űreszköz az aszteroida-övön?
  • a gyakorlatban működik-e a hintamanőver?
Az előbbi kérdés megválaszolására a Pioneer–10 és Pioneer–11 szondapárost küldték, mintegy előőrsként. Úgy tervezték, hogy ha a két szonda baj nélkül átjut a Mars és a Jupiter közötti kisbolygóövön, akkor indítható az „igazi” űrszonda. A két Pioneer probléma nélkül eljutott a Jupiterhez, ahol azonban érdekes meglepetés várta őket: a bolygó vártnál erősebb sugárzási övezete. Ezen mérések még éppen idejében érkeztek, hogy az építés alatt álló Voyager szondák sugárvédelmét megerősítsék. A hintamanőver működőképességét pedig az 1973-ban indított Mariner–10 merkúrszonda Vénusz melletti elrepülésével kívánta igazolni a NASA. 1974. február 5-én erre is sor került, az űreszköz, kihasználva a Vénusz gravitációját, pontosan a Merkúr felé lendült.
A két sikeres „előtanulmány” után indulhatott a Voyager-program. Az űrkutatás történetének egyik csúcsaként számon tartott Voyager küldetés párosra az 1970-es évek végén került sor, és a célja a külső nagybolygók elérése volt – igaz elsőre csak mellettük való elrepüléssel. Először a Voyager–2 startolt 1977. augusztus 20-án, majd nem sokkal később, 1977. szeptember 5-én a Voyager–1 is elindult, hogy az első állomáshoz, a Jupiterhez már előbb érjen el. A Voyager-1 előbb sikeresen elrepült a Jupiter, majd a tökéletes hintamanőver után a Szaturnusz mellett. Itt aztán a fő cél a gyűrűrendszer vizsgálata volt, le is mondtak a tervezők a további gázbolygók eléréséről, így a gyűrűk melletti elrepülés után a gravitációs hinta kilendítette a szondát a Naprendszer fő síkjából, és a Voyager elindult kifelé csillagrendszerünkből, így ma a legmesszebbre jutott ember alkotta űreszközként tartjuk számon. A Voyager-2 kicsit később, 1979. július 9-én érte el a Jupitert, majd 1981. augusztus 25-én a Szaturnuszt. A második hintamanőver is jól sikerült, a szonda irányt vett az Uránusz felé, amelyet 1986. január 24-én ért el. A siker továbbra is kitartott a program mellett és 1989. augusztus 24-én az utolsó gázóriást, a Neptunuszt is „begyűjtötte”. Végül a Neptunusz után ez a szonda is kifelé folytatta útját a Naprendszerből. A két Voyager tekintélyes felfedezés-listát tudhat magáénak: felfedezték a Jupiter, az Uránusz és a Neptunusz gyűrűit, tucatnyi holdat találtak, valamint először juttatták részletes képekhez a kutatókat a két legkülső bolygóról. A meghosszabbított küldetés során kijutnak majd a Naprendszerből, és mindkettő az emberiség üzenetét is magával viszi a csillagközi térbe.

A gázóriások körül
A Voyagerek sikere után és a Naprendszerre legnagyobb hatást gyakorló bolygók részletesebb megismerésére a két legnagyobb planétához célzott, csak az adott célpontot és holdrendszerét felmérő, orbitális pályára állított szondákat küldött a NASA. Elsőként a Jupiter és holdrendszerének felderítését vették célba az amerikaiak. 1989. október 18-án az Atlantis űrrepülőgép fedélzetéről startolt a Galileo űrszonda, hogy sorozatos hintamanővereket követően, az óriásbolygó körüli pályára álljon (az odaúton két kisbolygó, a Gaspra és az Ida mellett is elrepült, utóbbi mellett felfedezett egy, az aszteroida mellett keringő aszteroida-holdat – az első ilyen típusú égitestet –, a Dactylt). A szonda két részből állt: egy keringő és egy leszálló egységből. A leszálló egység a pályára állás előtt levált az anyaszondáról és ejtőernyőn alámerült a bolygó légkörébe. 58 percnyi és 150 km ereszkedés alatt sok használható adatot gyűjtött és továbbított a légkörről. Az egység az alsóbb rétegekbe érve elolvadt és elpárolgott. A Galileo keringő egység a sikeres pályára állást követően közel nyolc évig működött és küldött adatokat. A Jupiterről nagyságrenddel növelte a tudásunkat: ammóniát fedezett fel a felhőkben, megerősítette az Io hold vulkáni aktivitásáról küldött Voyager felfedezést, kimutatta az Europa hold felszíne alatt rejlő víz óceánt és még számos kevésbé szenzációs eredményt ért el.
A NASA – és az ESA – következő gázbolygó-szondája a Cassini–Huygens küldetés volt a Szaturnusz rendszerének kutatására. A program nem sokkal a Galileo sikerei után indult be és hét évi repülés után ígért eredményeket. A szonda kettős küldetés volt: a NASA építette a keringésre szánt anyaszondát, az ESA pedig egy kisebb leszálló egységet, a Huygenst, amelyet nem a bolygóra akartak eljuttatni, hanem a legnagyobb hold, a Titán felszínére szántak. A startra 1997. október 15-én került sor Cape Canaveralen. Ezúttal is hármas hintamanővert alkalmaztak (Vénusz–Föld–Jupiter) és a Cassini 2004. július 1-jén sikerrel pályára is állt a Szaturnusz körül. Fél évvel később, 2004. december 25-én a Huygens levált az anyaszondáról, ahová 2005. január 14-én szállt le. Bár a Cassini küldetése még most is zajlik, máris számos felfedezést köszönhetünk a szondának. Közeli képek készültek a Szaturnusz kisebb holdjairól (Iapetus, Enceladus, Phoebe), betekintést nyerve – főként jégből álló – belső felépítésükbe, megerősítette a szonda a gyűrűrendszer „küllőinek” Voyager általi felfedezését, magán a gyűrűrendszeren is beható vizsgálatot végezve közben, és a fényképek felfedték a Titán régóta feltételezett metántavait.

Emberek a fedélzeten

Emberekkel végzett bolygókutatási program eddig egyetlenegy zajlott, igaz, az az egész űrkutatás-történelem legjelentősebb projektje, az Apollo-program volt, az ember Holdra lépésének megvalósítása. A politikai indíttatásból kezdődő program során hosszas előkészületek – több próbarepülés – után 1969. július 20-án két űrhajós, Neil Armstrong és Buzz Aldrin szállt le, majd tett rajta holdsétát talajminták beszerzésére, fényképfelvételek készítésére és műszerek felállítására. Később, további két és fél év alatt még öt expedíció jutott el a holdfelszínre, egyre hosszabb időket töltve kutatással, egyre nagyobb távolságokat megtéve a felszínen és egyre több kőzetmintát nyerve. A fennhagyott műszerek évekig tartó mérései és a minták alapján a Naprendszer belső vidékeiről alkotott kissé hiányos kép előbb alapjaiban változott meg, majd teljessé lett. Ennek alapján ma már fizikailag is igazolható a Naprendszer kora és fejlődéstörténete

Leszállások, felszíni felderítések

Később a bolygók körüli pályára állás és a felszínre történő leszállás lett a cél, amellyel megindultak a részletes vizsgálatok, a Naprendszer beható megismerése. Az első „meghódított” bolygó a Vénusz lett, ezzel 1970. december 17-én a Venyera–7 lett az első sikeres leszálló egység egy másik bolygón. A szonda több sikertelen elődje után szállt le a Vénusz felszínén és hihetetlen körülményekről küldött adatokat a meglepően rövid, mindössze 23 perces működése alatt. A Föld ikerbolygóján uralkodó körülmények (óriási hőmérséklet, hihetetlenül magas nyomás) meglepték a kutatókat. A második részletesen vizsgált bolygó a külső szomszédunk volt. A Marsra először a Marsz–3 szállt le, ám a szovjet szonda mindössze 20 másodpercig működött az 1972. december 2-ai leszállásakor. A Mars igazi felfedezésére 1976 nyaráig kellett várni, amikor a Viking-program két ikerszondája leszállt a felszínre, hogy az élet nyomait keresse. A talaj kémiai összetételét vizsgáló űrszondapáros eredményei sem cáfolni, sem megerősíteni nem tudták az élet létezéséről szóló feltételezéseket. A Vikingek nemcsak leszálló szondák voltak, hanem keringő egységekkel is rendelkeztek, amelyek globális fényképező küldetést végeztek (amellett, hogy rádió átjátszó állomásként szolgáltak a leszálló egységek számára).
Húsz év kihagyás után, a ’90-es évek közepétől sorozatban érkeztek a marsszondák a vörös bolygóhoz, köztük keringő és leszálló egységek egyaránt. Új alapelven működő leszállórendszert fejlesztettek ki, marsjárókat a felszínre juttató leszálló egységeknek, és a mozgékony szondákkal – a Bejczy Antal által tervezett autonóm irányítórendszereknek is köszönhetően – nagyságrendekkel hatékonyabb kutatási programokat folytattak. A marsjárós küldetések közül legsikeresebb a 2004-ben leszállt Spirit és Opportunity szondapáros volt, amelyek bebizonyították a víz jelenlétét a bolygón. A felfedezést később a Phoenix szonda megerősítette, ami nem csak a múltban létezett víz nyomait, hanem néhány jégdarab képében a jelenleg is meglevő víz jelenlétét mutatta ki. A vörös bolygót nem csak a felszínen kutató szondák vizsgálták, hanem Mars körüli pályáról számos keringő szonda is. Fényképezéssel, magasságméréssel a globális domborzatot mérték fel (a Vikingekhez képest forradalmian korszerűbb, 20 évvel „frissebb” technikával felvértezve), spektrométereikkel a marsi kőzetek összetételét vizsgálták és a magasból is megerősítették – néhány vízfolyásnyom alapján – a víz jelenlétét. Külön kutatási terület a marsi légkör és a marsi időjárás vizsgálata, ahogy a sarki jégsapkák is külön kutatási területnek számítanak. Utóbbiakról az ESA Mars Express szondája állapította meg a különböző összetételüket: a déli jégsapka főként vízjégből, az északi pedig széndioxidjégből épül fel. A modern Mars-kutatások gerincét az Egyesült Államok végezte összesen négy sikeres leszálló és három keringő szondával, amelyet egy európai szonda egészített ki.
A másik részletesebben kutatott kőzetbolygó a Vénusz volt, amelynek kutatása szintén két hullámban zajlott. Először a szovjet kutatók ambicionálták a bolygó elérését és felderítését, de váratlanul komoly nehézségekbe ütköztek. A Venyera-program első hat szondája elveszett, ugyanis váratlanul szélsőséges körülményekre leltek. A Venyera–7 lett az első sikeres próbálkozás, és a sorozat a Venyera–14-ig tartalmazott leszálló egységeket, amelyek közül a leghosszabban működő egység is csak 127 percig küldött adatokat, a többi egy óráig sem működött. A szondák hihetetlenül magas hőmérséklet és nyomás értékeket – közel 500 °C-ot és a földi légnyomás több mint 90-szeresét – mértek és képeiken félhomályt rögzítettek, amelyben a maximum 1 kilométeres láthatóság volt jellemző. A szovjetek a leszálló egységek után áttértek a keringő egységek alkalmazására, a két utolsó Venyerával, a 16-tal és 17-tel radartérképezést végeztek. 1989-ben a NASA is megjelent a Vénusz felfedezőinek sorában, az űrrepülőgéppel indított Magellán vénuszszondával. A Magellán feladata a két utolsó Venyerához hasonlóan radartérképezés volt. Az amerikai szonda rendkívüli sikerére jellemző a 98%-os lefedettségű háromdimenziós domborzati modell és a 95%-os gravitációs mező modellje.
A Merkúrra a mai napig nem sikerült leszállni vagy pályára állni körülötte, ám már úton van a NASA MESSENGER szondája, amely a tervek szerint 2011-ben ezt a „hiányt” is megszünteti, amikor pályára áll körülötte, hogy egy évig tartó kutatóprogramját elvégezze. Az odaúton végzett hintamanőverek során már így is újabb ismereteket szerzett a szonda a legbelső bolygóról, 2009. szeptember 29-ei közelrepülésekor például egy óriási becsapódási medencéről küldött fotókat.

Bolygókutatás

A bolygók elérése
Az űreszközök számára a Föld körüli keringés és az onnan történő megfigyelések után következő logikus lépés a távolabbi égitestek, a Hold és a bolygók, később a kisbolygók elérése volt. Először ennél a feladatnál is a képesség megszerzése volt a fő cél, így az első bolygószondák feladata a célégitest melletti elrepülés – és a közelség rövid periódusa alatt a felszín fényképezése volt. Az első kutatási célpont természetesen a legközelebbi égitest, a Hold volt, amelyet 1959. január 2-án sikerült elérni, majd ezután becsapódó szondák sorának vizsgálatai következtek – a becsapódó pályák utolsó óráit főként fényképezésre felhasználva. A becsapódó szondákat a leszálló, illetve a Hold körül pályára álló eszközök követték. 1966. február 3-án sikerült először sima leszállást bemutatni a szomszéd égitesten: a szovjet Luna–9 ért talajt az Oceanus Procellarumon. Nem sokkal később az első sikeres pályára állás is megtörtént, 1966. március 31-én a Luna–10 révén. Ezt követően a szovjet Luna-program, valamint az amerikai Surveyor- és Lunar Orbiter-program sorozatos repüléseivel derítették fel a Holdat. A fő cél mindhárom programnál egy űrhajósokkal történő leszállás előkészítése volt, ennek megfelelően elsősorban fotófelderítés történt (a keringő egységek globális holdtérképet készítettek, a leszálló egységek pedig panorámaképeket küldtek a leszállóhelyekről), valamint a leszálló egységek ásásokkal talajmechanikai vizsgálatokat végeztek annak megállapítására, hogy egy nehezebb űrhajót képes-e megtartani a holdpor. Időrendben a Hold elérése után, de még a felszíni leszállás, vagy pályára állás előtt lezajlottak a bolygók elérésére szolgáló kísérletsorozatok is mindkét nagyhatalom részéről, először a bolygók esetében is az égitest(ek) melletti elrepülésekkel. Az amerikai Mariner–2 1962. december 14-én érte el a Vénuszt, majd egy testvérszonda, a Mariner–4 1964. november 28-án a Mars mellett repült el sikerrel. A legnehezebb a Merkúr elérése volt, ez először 1974. március 29-én valósult meg, a Mariner–10 első gravitációs hintamanővere során.